Description
给出 \(n\) 个数 \(a_i\) ,以及 \(n\) 个数 \(b_i\) ,要求两两配对使得 \(a>b\) 的对数减去 \(a<b\) 的对数等于 \(k\) 。
\(0\leq k\leq n\leq 2000\) ,保证 \(a,b\) 无相同元素。
Solution
我们假设 \(a>b\) 对数为 \(x\) ,可以求得 \(x=\frac{n+k}{2}\) 。
我们令 \(f_{i,j}\) 表示前 \(i\) 个 \(a\) 中,选了 \(j\) 组满足 \(a>b\) 的方案数。
容易得到 \(\text{dp}\) 方程
\[f_{i,j}=f_{i-1,j}+(l_i-j+1)\times f_{i-1,j-1}\]
其中 \(l_i\) 表示从小到大排序后 \(b\) 中 \(<a_i\) 的最靠后一个数。
我们记 \(g_i=f_{n,i}\times (n-i)!\) 即满足 \(a>b\) 的组数 \(\geq i\) 的方案数,再令 \(f_i\) 表示恰好满足 \(a>b\) 的组数 \(= i\) 的方案数。
容易发现对于 \(i>j\) \(f_i\) 恰好在 \(g_j\) 中算了 \({i\choose j}\) 次。
那么存在
\[g(k)=\sum_{i=k}^n{i\choose k}f(i)\]
由二项式反演得
\[f(k)=\sum_{i=k}^n(-1)^{i-k}{i\choose k}g(i)\]
直接求解即可。
Code
#includeusing namespace std;const int N = 2000+5, yzh = 1e9+9;int n, k, a[N], b[N], l[N], f[N][N], fac[N], ifac[N], g[N];int C(int n, int m) {return 1ll*fac[n]*ifac[m]%yzh*ifac[n-m]%yzh; }void work() { scanf("%d%d", &n, &k); if ((n+k)&1) {puts("0"); return; } k = (n+k)/2; ifac[0] = ifac[1] = fac[0] = fac[1] = 1; for (int i = 2; i < N; i++) ifac[i] = -1ll*yzh/i*ifac[yzh%i]%yzh; for (int i = 2; i < N; i++) fac[i] = 1ll*fac[i-1]*i%yzh, ifac[i] = 1ll*ifac[i-1]*ifac[i]%yzh; for (int i = 1; i <= n; i++) scanf("%d", &a[i]); for (int i = 1; i <= n; i++) scanf("%d", &b[i]); sort(a+1, a+n+1); sort(b+1, b+n+1); int loc = 0; for (int i = 1; i <= n; i++) { while (loc < n && b[loc+1] < a[i]) ++loc; l[i] = loc; } f[0][0] = 1; for (int i = 1; i <= n; i++) { f[i][0] = f[i-1][0]; for (int j = 1; j <= i; j++) f[i][j] = (1ll*f[i-1][j]+1ll*f[i-1][j-1]*max(0, l[i]-j+1)%yzh)%yzh; } for (int i = 0; i <= n; i++) g[i] = 1ll*f[n][i]*fac[n-i]%yzh; int ans = 0; for (int i = k; i <= n; i++) if ((i-k)&1) (ans -= 1ll*C(i, k)*g[i]%yzh) %= yzh; else (ans += 1ll*C(i, k)*g[i]%yzh) %= yzh; printf("%d\n", (ans+yzh)%yzh);}int main() {work(); return 0; }